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Abstract

Organic compounds with surfactant properties are commonly found in atmospheric
aerosol particles. Surface activity can significantly influence the cloud droplet form-
ing ability of these particles. We have studied the cloud droplet formation by two-
component particles comprising one of the organic surfactants sodium octanoate,5

sodium decanoate, sodium dodecanoate, and sodium dodecyl sulfate, mixed with
sodium chloride. Critical supersaturations were measured with a static diffusion cloud
condensation nucleus counter (Wyoming CCNC-100B). Results were modeled from
Köhler theory applying three different representations of surfactant properties: (1) us-
ing concentration-dependent surface tension reduction during droplet growth and ex-10

plicitly accounting for surfactant surface partitioning in both solute suppression (Raoult
effect) and curvature enhancement (Kelvin effect) contributions to the droplet equilib-
rium water vapor supersaturation, (2) disregarding surfactant partitioning and using a
concentration-dependent surface tension for the droplets corresponding to a macro-
scopic (bulk) aqueous solution of the same overall composition, and (3) disregarding15

surfactant properties and assuming the constant surface tension of pure water through-
out droplet activation. We confirm previous results for single-component organic sur-
factant particles, that experimental critical supersaturations are greatly underpredicted,
if reduced surface tension is applied in Köhler theory while ignoring the effects of sur-
face partitioning in droplets. We further show that assuming the constant surface ten-20

sion of pure water can also lead to significant underpredictions of experimental criti-
cal supersaturations. The full account for surfactant partitioning in activating droplets
generally predicts experimental critical supersaturations well. In addition, for mixed
particles comprising less than 50% by mass of surfactant, ignoring surfactant proper-
ties and simply using the constant surface tension of pure water also provides a good25

first-order approximation of the observed activation.
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1 Introduction

The influence of atmospheric aerosol particles on cloud formation and properties con-
stitutes the single largest uncertainty in assessing anthropogenic climate forcing (IPCC,
2007). Cloud droplets form when water vapor condenses onto particle surfaces. In the
process, particle constituents may dissolve into the aqueous phase and form solution5

droplets. The ability of particles to act as cloud condensation nuclei (CCN) therefore
depends on their chemical composition, as well as size. Surface active molecules,
or surfactants, concentrate in the surface and can reduce the surface tension of an
aqueous solution. Reduced surface tension, compared to that of pure water, has been
demonstrated in bulk samples of atmospheric cloud and fog water (Facchini et al.,10

1999, 2000) and in aqueous extracts of collected atmospheric aerosol samples from a
wide variety of sources and environments, including biomass (Asa-Awuku et al., 2008)
and coal burning (Oros and Simoneit, 2000), and marine (Mochida et al., 2002), rural
(Kiss et al., 2005), and polluted environments (Dinar et al., 2006). The goal of this work
is to advance the fundamental understanding of the role of surfactants in cloud micro-15

physics, which is essential for proper representations of aerosol effects in atmospheric
models.

Fatty acids and their salts constitute an important class of atmospheric surfactants
and have been identified in aerosol samples from both marine (Mochida et al., 2003),
urban (Yassaa et al., 2001), and continental (Cheng et al., 2004) environments. We20

have previously addressed the cloud microphysics of single-component particles com-
prising a series of saturated fatty acid sodium salts and demonstrated the importance
of a comprehensive account for surfactant properties in predictions of cloud droplet
formation (Prisle et al., 2008). Atmospheric particles are however generally mixtures of
both organic and inorganic species (Murphy et al., 2006). Inorganic salts can directly25

influence organic surfactant properties and may also affect the relative importance of
different surfactant properties for cloud droplet formation. In this work, we therefore
take the next step and investigate two-component particles comprising organic sur-
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factants mixed with sodium chloride (NaCl). Specifically, we have studied the sodium
salts of n-octanoic (caprylic), n-decanoic (capric) and n-dodecanoic (lauric) acid. In
addition, we included sodium dodecyl sulfate (SDS), which is a strong industrial sur-
factant with well-quantified properties. SDS has previously been targeted as a model
compound for water-soluble atmospheric surfactants in cloud droplet formation studies5

of both single-component particles (Li et al., 1998; Sorjamaa et al., 2004) and mixed
particles together with NaCl (Rood and Williams, 2001).

The fatty acid salts (FAS) and SDS are amphiphiles. Each molecular structure is
characterized by a polar head-group (the −COO− or −SO−

4 functional groups) and a
non-polar unbranched hydrocarbon tail. To reduce destabilizing interactions with the10

polar water molecules in the aqueous phase, the surfactant molecules preferentially
accumulate at the air-water interface and arrange themselves with the hydrophilic ends
dissolved in the aqueous solution and the hydrophobic tails pointing outwards to the
air. This is the origin of their surface activity.

The small solution droplets involved in cloud droplet formation typically have sub-15

micrometer diameters, whereas the overall dimensions of the bulk solutions charac-
terized by conventional laboratory methods (as in surface tension measurements) or
collected in field samples (like a bucket of rain water) are inherently much larger. We
here follow the convention used in our previous study and denote bulk aqueous solu-
tions as “macroscopic”, to comply with the “microscopic” droplets (Prisle et al., 2008).20

The term “bulk” designates the distinct bulk phase within an aqueous surfactant solu-
tion, to distinguish it from the surface phase. A similar practice is used by Ruehl et al.
(2009).

When the surfactant molecules accumulate at the air-water interface of an aqueous
solution, a non-uniform distribution arises, in terms of a concentration gradient between25

the solution bulk and surface phases. The relative distribution of surfactant molecules
between these distinct phases is what we refer to as the surfactant (bulk-)surface par-
titioning. Due to surface partitioning, the relative dimensions of the bulk and surface
phases become key factors in determining surfactant solution properties. Microscopic
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droplets have much larger surface-area-to-bulk-volume ratios than macroscopic so-
lutions. At the surface-partitioning equilibrium, the relative distribution of surfactant
molecules between the bulk and surface phases will therefore be different in micro-
scopic droplets and in macroscopic solutions of the same total surfactant concentra-
tion. A comprehensive thermodynamic model of cloud droplet formation must therfore5

take surfactant surface partitioning in the droplets accordingly into account.
Here, we compare experimental observations of cloud droplet formation by mixed

surfactant-NaCl particles to thermodynamic model predictions using three different rep-
resentations of surfactant properties. We show that the cloud droplet forming potential
is in all cases greatly overestimated by including reduced droplet surface tension while10

neglecting surfactant surface partitioning within the droplets. This confirms our pre-
vious results for pure-component particles comprising the same organic surfactants
(Sorjamaa et al., 2004; Prisle et al., 2008). We furthermore show that, even assuming
the constant surface tension of pure water can also lead to significant overestimations
of the cloud droplet forming potential, if surfactant surface partitioning is not consid-15

ered. A full account of surfactant properties, including surface partitioning, describes
observations well. However, for mixed particles comprising less than about 50% by
mass of surfactant, disregarding surfactant properties altogether also appears to be a
good first-order approximation for describing cloud microphysics.

2 Experimental20

We have measured the critical supersaturation as a function of dry particle diameter
for two-component laboratory-generated particles comprising organic surfactant (SFT)
and sodium chloride (NaCl) in different relative amounts. Particle compositions in-
cluded one of the surfactants sodium octanoate (CH3(CH2)6COONa; C8), sodium de-
canoate (CH3(CH2)8COONa; C10), sodium dodecanoate (CH3(CH2)10COONa; C12),25

and sodium dodecyl sulfate (CH3(CH2)10SO4Na; SDS), mixed with NaCl. Chemicals
were obtained at the highest purities available from commercial sources: sodium oc-
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tanoate (Sigma, capillary GC, minimum 99%), sodium decanoate (Fluka, purum. 98%),
sodium dodecanoate (Sigma, Sigma Grade 99–100%), sodium dodecyl sulfate (Sigma,
>99%), and sodium chloride (Riedel-deHaën, >99.8%). Before use, chemicals were
baked overnight at moderate temperatures (<80◦C) to evaporate any volatile impurities.

2.1 CCN measurements5

Critical supersaturations were determined using a static thermal-gradient diffusion-type
cloud condensation nucleus counter (Wyoming CCNC-100B) (Snider et al., 2006). The
experimental set-up and procedures employed are described in detail by Prisle et al.
(2008) (and references herein).

Particles were generated by atomization of aqueous solutions using a constant out-10

put atomizer (TSI-3076), operated in recirculation mode. The wet aerosol produced
was subsequently dried by passing through a set of two silica-gel containing diffusion
driers in series, followed by dilution with dry air. The relative humidity (RH) in the dry
aerosol flow was typically between 5−8%, except for one occasion where the RH during
one measurement (about 1.5 h) increased to nearly 20%. It is an underlying assump-15

tion that the relative mass fractions of organic-to-inorganic components in the dry par-
ticles reflect the solute composition in the atomizer solution. Atomizer solutions were
prepared with de-ionized and purified water (18.2 MΩ cm resistivity, produced in a Milli-
Q Plus Ultra Pure Water System). Total concentrations were between 0.12−0.31 g L−1.
Particle compositions studied comprised the FAS in approximate mass fractions of 20,20

50, 80, and 95%, and SDS in approximate mass fractions of 20, 50, and 80%, relative
to NaCl. Exact surfactant mass-fractions (wSFT [%]) in the dried particles are given in
Table 1.

From the produced polydisperse aerosol, a narrow electrical-mobility particle size-
fraction was selected with an electrostatic classifier (TSI-3080). The number concen-25

tration of activated particles (CCN [cm−1]) at selected water vapor supersaturations
(SS [%]) was measured with the CCNC. The total particle number concentration (CN
[cm−1]) was measured in parallel using a condensation particle counter (TSI-3010). Se-
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lected particle electrical mobility diameters (Dp) were between 25−140 nm and CCNC
supersaturations were in the range 0.2−2.0%. Purified and dried high-pressure air
was used in all experiments. Laboratory temperatures were kept constant during the
course of each experiment by a thermostat air-conditioning system and were in the
range 296−297 K.5

2.1.1 CCNC calibration and data fitting

The CCN experiments give the fraction of activated particles (CCN/CN) with a se-
lected mobility diameter as a function of the supersaturation (SS) the particles
were exposed to. These data were fitted with a four-parameter sigmoidal func-
tion y=y0+a/[1+exp(−(x−x0)/b)] (Prisle et al., 2008). Including correction for the10

doubly-charged particles simultaneously selected in the classifier, the experimental
critical supersaturation (SSexp

c [%]) was determined from the midpoint of the single-
charged particles activation step (x0 [%]). The CCNC supersaturation was calibrated
with a linear relation, obtained from measurements on monodisperse ammonium
sulfate ((NH4)2SO4) and NaCl particles (Bilde and Svenningsson, 2004), such that15

SSexp
c =0.6638 x0−0.01168. Error bars depicted for the experimental critical supersat-

urations below are estimated as the 95%-confidence intervals corresponding to ±2τ,
where τ is the combined standard deviation from the sigmoidal fit to activated fractions
and the linear supersaturation calibration (Prisle, 2006).

3 Theory20

3.1 Köhler theory

Cloud droplet formation can be described by Köhler theory (Köhler, 1936) in terms of
the equilibrium growth and activation of an aqueous solution droplet. The Köhler equa-
tion relates the equilibrium water vapor saturation ratio (S) over a spherical solution
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droplet to its diameter (d ):

S ≡
pw

p0
w

=awexp
(

4νwσ
RTd

)
(1)

where pw is the equilibrium partial pressure of water over the solution droplet, p0
w

is the saturation vapor pressure over a flat surface of pure water, aw is the droplet
solution water activity, νw is the partial molar volume of water in the solution, σ is the5

droplet solution surface tension, R is the universal gas constant and T is the Kelvin
temperature. We approximate νw with the molar volume of pure water, given by the
water molar mass and mass density as ν0

w =Mw/ρw .
The water activity (aw ) term in Eq. (1) is equivalently called the Raoult term and

describes how the equilibrium partial pressure of water over an aqueous solution is10

suppressed from the pure water saturation vapor pressure by dissolved solutes ac-
cording to (the extended) Raoult’s Law, pw =awp

0
w . The exponential, or Kelvin, term of

Eq. (1) accounts for the vapor pressure enhancement over a curved droplet surface by
the Kelvin effect. The magnitude of the Kelvin term for a given droplet size (d ) and cor-
responding surface curvature depends explicitly on the droplet solution surface tension15

(σ).
A plot of water saturation ratio (S) versus droplet diameter (d ) gives the Köhler curve

for the droplet and its maximum defines the critical saturation ratio (Sc) and the cor-
responding critical droplet diameter (dc). Droplets that have been exposed to ambient
saturation ratios larger than their threshold values (S ≥ Sc) and surpassed their criti-20

cal diameters (d ≥ dc) are assumed to be activated cloud droplets that will continue
to grow into full-sized cloud drops, only limited by the transport of water vapor to the
droplet surface. For convenience, we often refer to the water vapor supersaturations,
SS/[100%]≡S−1, and analogously to the droplet critical supersaturations (SSc [%]).
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3.2 Surfactant surface partitioning

Surfactants (surface active molecules) preferentially concentrate at the air-water in-
terface of aqueous solutions. The resulting (bulk-)surface partitioning of surfactant
molecules can be thought of as governed by some equilibrium constant, Kp ∝∂Γ/∂cB,
where Γ (the surface excess) is the number of surfactant molecules per unit area in the5

surface phase (superscript S in the following) and cB is the surfactant concentration
per unit volume in the bulk phase (superscript B). The relative bulk-surface distribution
of surfactant solute thus depends on its propensity for the surface phase (directly from
the value of Kp) and on the relative dimensions of the solution bulk and surface phases
(due to the implicit dependence of Kp on surface area and bulk volume). The latter can10

thus be expressed by the surface-area-to-bulk-volume ratio (A/V [µm−1]) for the solu-
tion. For spherical liquid droplets with diameters of d =0.1, 1, and 10 µm, A/V (=6/d )
is 60, 6, and 0.6 µm−1, respectively, and for macroscopic solutions with flat surfaces,
A/V →0 as d →∞.

At the (bulk-)surface partitioning equilibrium, properties of an aqueous surfactant15

solution, such as water activity (aw ) and surface tension (σ), are thermodynamically
expressed as functions of the bulk phase composition (cB). However, surface partition-
ing depletes the solution bulk phase of surfactant molecules and decreases cB. Given
the same total surfactant concentration per unit of total solution volume (cT ), the larger
A/V of microscopic activating droplets entails that a larger fraction of the total number20

(nT ) of surfactant molecules in solution will reside in the surface (nS ) and a smaller
fraction in the bulk phase (nB) of the droplets, compared to macroscopic solutions.
The change in bulk-composition from the overall solution composition due to surfactant
surface partitioning is negligible in macroscopic solutions (cB∼cT ). For microscopic
droplets, the bulk phase depletion of surfactant can, on the other hand, be significant25

(cB�cT ). The resulting aqueous solution properties for a given overall composition,
particularly the solute suppression of equilibrium water partial pressure and the surface
tension reduction, will therefore depend on the solution A/V , determining the extent of
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surfactant depletion from the bulk phase due to surface partitioning.
Surfactant surface partitioning in microscopic droplets thus potentially affects cloud

droplet activation through both Raoult and Kelvin effects. The smaller surfactant bulk
phase concentration in a microscopic droplet, compared to a macroscopic solution with
the same total concentration of dissolved surfactant (cT ), will be reflected in a dimin-5

ished water partial pressure suppression by the Raoult effect (a larger water activity
aw ) and a diminished surface tension reduction (a larger surface tension σ). The latter
leads to an amplified curvature enhancement of water vapor pressure by the Kelvin
effect, compared to a droplet of the same size (d ), but with the surface tension of a
macroscopic solution of the same total concentration. A simple illustration of the effect10

of surface partitioning on surfactant bulk-concentration and surface tension in droplets
of different sizes is given in Appendix A.

4 Thermodynamic model

The thermodynamic model used in this work has been described in detail by Sorjamaa
et al. (2004) and Prisle et al. (2008). All model calculations are based on evaluating the15

water vapor equilibrium saturation ratio (S) as a function of droplet diameter (d ) from
Eq. (1), for aqueous solution droplets with known initial sizes and compositions.

Droplets are assumed to form on spherical dry particles of known diameters and
compositions. Dry particle diameters (Dp) correspond to the electrical-mobility diame-
ter mode (Dp) selected in the CCN experiments and the compositions are analogously20

given by the respective surfactant (SFT) and NaCl mass fractions (wSFT and wNaCl,
where wSFT+wNaCl = 1). The total amounts of surfactant and NaCl solute (nT

SFT [mol]

and nT
NaCl [mol]) in the droplets are then calculated from the dry particle volume (Vp)

and mass fractions, assuming volume additivity of the components. Unit mass density
is assumed for the fatty acid salts (FAS) (ρFAS =1 g cm−3), owing to lack of bulk-density25

information for the solid FAS in general and for the mixed FAS−NaCl dry particles in
particular. At a given droplet size, the total amount of water (nT

w [mol]) is calculated
24678
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from the volume of water, determined as the difference between the droplet and dry
particle volumes (Vw = V −Vp), using the pure water molar volume, nT

w = Vw/ν
0
w .

Both surfactant and NaCl solutes are assumed to be completely dissolved in the
droplet solution, that is, effects of limited water solubilities in macroscopic solutions
on the concentration of dissolved particle constituents are not accounted for. It is fur-5

thermore assumed that dissolved surfactant and NaCl are fully dissociated, such that
dissociation factors for both solute species are δSFT = δNaCl = 2. The applicability of
these simplifying assumptions for the model calculations has been discussed in our
previous work (Prisle et al., 2008). Physical properties of the surfactants and NaCl
used in the calculations are summarized in Table 2.10

For each droplet size and corresponding overall composition, the droplet bulk-
composition is then determined. When surfactant surface partitioning in the droplet is
not considered, the droplet bulk phase concentrations of water (cB

w ), surfactant (cB
SFT),

and NaCl (cB
NaCl) are all set equal to the corresponding total droplet concentrations (cT

w ,

cT
SFT, and cT

NaCl). Taking surface partitioning into account, these bulk phase concentra-15

tions are evaluated by solving the bulk-surface partitioning equilibrium for the droplets,
as described in Sect. 4.1 below. Because activity data are to our knowledge not avail-
able, droplet solutions are treated as ideal by using bulk phase concentrations (on the
scales of the respective reference states) instead of the appropriate activities for all
droplet components. Particularly, the droplet bulk phase water activity is set equal to20

the corresponding water mole-fraction concentration (aBw = xB
w ). Droplet solution ide-

ality is also implicitly assumed by some of the other approximations applied in these
calculations. In most cases, droplets are sufficiently dilute at the point of activation
that ideality of all droplet components must be a reasonable assumption (Prisle et al.,
2008).25

The water equilibrium saturation ratio (S) is then calculated for each droplet size (d )
from Eq. (1). Droplet solution surface tension is either evaluated from a concentration-
dependent ternary SFT-NaCl aqueous solution parametrization, σ = σ(cB

SFT,c
B
NaCl), or

set equal to the constant value for pure water (σ = σw ). Specifically, Köhler model
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predictions are made with three different representations of surfactant properties: (1)
using a concentration-dependent droplet surface tension and explicitly accounting for
the surfactant bulk-surface partitioning equilibrium in the droplets upon evaluation of
both Raoult and Kelvin terms of Eq. (1), denoted “σ,p”, (2) using a concentration-
dependent droplet surface tension, but neglecting the effects of surfactant surface par-5

titioning in the droplets and evaluating both Raoult and Kelvin terms corresponding
to a macroscopic (bulk) solution of the same overall composition, denoted “σ,b”, and
(3) completely disregarding surfactant properties of the organic by ignoring its sur-
face partitioning and using the constant surface tension of pure water (σw ) throughout
droplet activation, denoted “σw ”. In the following, the partitioning representation and10

the concentration-dependent surface tension parameterizations are described in more
detail.

4.1 The droplet partitioning representation (σ,p)

The partitioning model (σ,p) is based on solving the Gibbs adsorption equation (Gibbs
et al., 1928) for the bulk phase concentrations of all droplet components:15 ∑

nT
i RTd ln(aBi )+Adσ =0 (2)

where A [m2] is the spherical droplet surface area, and nT
i [mol] is the total molar

amount and aBi is the bulk phase activity of droplet component i . Droplet solutions
comprise water (w), surfactant anion (SFT−), and sodium (Na+) and chloride (Cl−)
ions. Bulk phase activities are approximated by the corresponding concentrations (cB

i ),20

as mentioned. For each droplet component, the total amount is equal to the sum of
the individual amounts in the separate bulk and surface phases, nT

i = nB
i +nS

i , and
equivalently for the droplet component volumes.

When calculating the surfactant surface partitioning, electro-neutrality is assumed for
both the droplet bulk and surface phases, such that equal amounts of sodium cations25

and surfactant anions partition to the surface. In our model description, the surface
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phase therefore comprises both the topmost molecular layer, dominated by the sur-
factant anions, and additional sub-surface layers, where sodium cation concentrations
are enhanced compared to the bulk phase. Overall, the net charge of these layers
constituting the surface phase is zero. It is however desirable that both droplet bulk-
volume (V ) and surface-area (A) are independent of the bulk-surface partitioning of5

droplet components, so the surface-volume is set to zero. In practice, this just means
that when some species has enhanced surface-volume, an equal volume of another
species is depleted from the surface phase.

One further approximation is that we assume the water and NaCl bulk phase ratio
to be equal to the ratio of their total amounts, nT

w/n
T
NaCl =nB

w/n
B
NaCl. This simplifies our10

calculations, since the set of equations given by Eq. (2) now only depends on a single
independent variable, the surfactant anion bulk phase activity aBSFT− .

4.2 Surface tension parameterizations

Model representations σ,p and σ,b employ concentration-dependent equilibrium sur-
face tensions for the growing droplets (Prisle et al., 2008). Experimental ternary SFT-15

NaCl aqueous solution surface tensions were obtained from Prisle et al. (2009) for
the fatty acid salts (FAS), and from Rehfeld (1967) and Matijevic and Pethica (1958) for
SDS. Surface tensions were parameterized as fuctions of both surfactant and NaCl bulk
phase concentrations by fitting these data with the Szyskowski equation (Szyskowski,
1908). Experimental surface tensions decrease with increasing respective bulk phase20

concentrations of both surfactant and NaCl over the reported ranges. For a given NaCl
concentration, the surfactant strength in the ternary aqueous solutions, in terms of
the surface tension reduction from the pure water value (σw −σ) attained for a given
surfactant concentration, increases in the same order as for the corresponding binary
aqueous solutions, as C8<C10<C12<SDS.25

For the FAS-NaCl aqueous solutions, the Szyskowski equation was fitted to experi-
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mental surface tensions in the form:

σ =σw +
(
dσNaCl

dmNaCl

)
mNaCl−aln(1+mFAS/b) (3)

where mNaCl and mFAS are the NaCl and FAS bulk phase molal concentrations
(moles of solute species per kilogram of water) and σw = 72.2 mNm−1 is the pure
water surface tension at 296.65 K. The surface tension gradient for aqueous NaCl,5 (

dσNaCl
dmNaCl

)
=1.61 [mN m−1/mol kg−1], is obtained by linear fitting to data from Vanhanen

et al. (2008). Szyskowski equation fitting parameters a and b depend on the FAS bulk
phase solute mass fraction (wFAS) relative to NaCl (where wFAS+wNaCl =1):

a = a1+a2wFAS+a3w
2
FAS

(4)

b = b1+b2wFAS+b3w
2
FAS

(5)10

Fitted parameters are given in Table 3. Note that, due to surfactant surface partitioning,
relative surfactant and NaCl solute bulk phase mass-fractions are generally not equal
to the corresponding total mass-fractions of surfactant and NaCl (wSFT and wNaCl) in
the dry particles.

The SDS-NaCl aqueous solution surface tension parametrization is obtained from15

the Szyskowski equation with SDS and NaCl bulk phase molar concentrations (moles
of solute species per liter of solution) cSDS and cNaCl:

σ =σw +
(
dσNaCl

dcNaCl

)
cNaCl−aln(1+cSDS/b) (6)

Because solutions are dilute, molarities and molalities are approximately equal.

Therefore, the same numerical value of the surface tension slope,
(
dσNaCl
dcNaCl

)
=20

1.61 [mN m−1/mol L−1], is also used here. Fitted parameters are a= 13.9 mN m−1

and b= (9.27E−6 mol2 L−2)/(cNaCl +9.73E−3 mol L−1). A ternary SDS-NaCl aque-
ous solution surface tension parametrization based on the same data from Rehfeld
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(1967) and Matijevic and Pethica (1958) is also provided by Li et al. (1998). This
parametrization is however not continuous, which would cause problems in our calcu-
lations, and therefore the new continuous parametrization in Eq. (6) was made.

Surfactants can form micelles in concentrated aqueous solutions above the so-called
critical micelle concentration (cmc). Micelles are aggregate structures in which the5

amphiphilic surfactant molecules orient themselves with the polar head-groups facing
the aqueous medium, thus shielding a core consisting of the non-polar hydrocarbon
tails (Corrin and Harkins, 1947). Surface tension parameterizations were obtained
by fitting data corresponding to surface tension values above those at the respective
ternary solution cmcs, estimated by visual inspection of the data. In all calculations,10

the surface tension at surfactant concentrations above the cmc is set constant to the
value at the cmc.

5 Results and discussion

5.1 Experimental results

Figure 1a–d show measured critical supersaturations (SSexp
c ) as a function of the se-15

lected mobility diameter (Dp) for the mixed SFT-NaCl particles. Individual panels dis-
play results for different surfactant mass-fractions (wSFT) in the dry particles.

5.1.1 Particle component molecular properties

In panels (a) and (b), it is seen that with surfactant mass-fractions wSFT ≤ 50%, differ-
ences in SSexp

c for particles of a given dry size comprising the different surfactants are20

comparable to experimental uncertainties. Any differences in activation behavior due
to individual molecular properties of the organic surfactants are thus dominated by the
presence of the inorganic salt. Panels (c) and (d), on the other hand, show that when
wSFT ≥80%, particles activate as a function of Dp with SSexp

c increasing in the order of
increasing surfactant molecular mass (MSFT), as C8<C10<C12<SDS.25
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We have previously observed single-component particles of these same surfactants
to activate with SSexp

c increasing in the order of increasing surfactant molecular mass
(Sorjamaa et al., 2004; Prisle et al., 2008). The surfactant strength also increases
with increasing MSFT in both binary SFT and ternary SFT-NaCl aqueous solutions (see
Sect. 4.2). For the solution droplets formed on pure surfactant particles of a given dry5

size, any enhanced surface tension reduction with increasing surfactant strength was
insufficient to overcome the decrease in Raoult effect arising directly from the increase
in MSFT and possibly also from enhanced bulk depletion by surface partitioning of the
stronger surfactants.

Inorganic salts influence organic surfactant properties, as seen from the ternary SFT-10

NaCl aqueous solution surface tensions in Sect. 4.2. Increased organic activity in
a high-ionic strength aqueous salt solution will drive surfactant molecules out of so-
lution by precipitation and/or enhanced surface partitioning. This is often called the
“salting-out effect” (Lin et al., 2005; Tuckermann, 2007; Vanhanen et al., 2008). The
large surfaces of microscopic droplets are expected to favor surface partitioning for15

considerations of cloud droplet activation. Enhanced surface partitioning may increase
surfactant strength but will also increase bulk phase depletion of dissolved surfactant
molecules. In addition, inorganic salts also directly influence cloud droplet activation.
The molecular mass of NaCl is much lower than those of the surfactants (see Table 2).
Therefore, NaCl by dry particle mass fraction contributes a much larger Raoult effect20

in the solution droplets formed, than the organics.
When NaCl comprises half, or more, of the dry particle mass, the large Raoult effect

of the inorganic salt appears to dominate any differences in molecular properties of the
individual organic surfactants in determining droplet activation. On the other hand, for
mixed particles with the surfactant comprising more than half of the mass, the effects25

of individual surfactant molecular properties become evident. Still, just as for the pure
surfactant particles, the increasing droplet surface tension reduction with increasing
surfactant strength at a given wSFT evidently cannot overcome the decrease in Raoult
effect from increased MSFT and enhanced surface partitioning.
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5.1.2 Surfactant mass fraction

Comparing panels (a)–(d) in Fig. 1 shows that, in case of each individual surfactant,
SSexp

c for a given dry particle size increases with increasing surfactant mass-fraction
(wSFT) in the particles. Thus, as NaCl is replaced by surfactant, any reduction in droplet
surface tension and Kelvin effect is dominated by the decrease in Raoult effect from5

increasing molecular mass (MSFT >MNaCl) and enhanced surface partitioning of the
surfactant.

5.2 Comparison with Köhler model predictions

In Fig. 2, experimental critical supersaturations (SSexp
c ) for particles with 81% sodium

dodecanoate (C12) are compared to predictions from Köhler theory with the three dif-10

ferent surfactant representations (SSσ,p
c , SSσ,b

c , and SSσw
c ). The bulk representation

(σ,b) greatly underpredicts experimental values for all dry particle sizes (Dp). Exper-
imental values are also somewhat underpredicted by the representation ignoring sur-
factant properties altogether (σw ). The partitioning representation (σ,p) on the other
hand describes experimental activation behavior well.15

5.2.1 General comparison

Experimental (SSexp
c ) and modeled (SSc) critical supersaturations are compared in

terms of the relative differences (SSexp
c −SSc)/SSexp

c [%/%] for all dry particle sizes
and compositions in Fig. 3 a–d. Each panel shows the comparison for particles com-
prising one of the surfactants. Being compared to three different model predictions,20

the same experimental data point thus appears in Fig. 3 as three different points (in
blue for σ,p, green for σ,b, and pink for σw , respctively). Error bars depict the ex-
perimental uncertainties scaled accordingly (±2τ/SSexp

c ). It is immediately clear, that
representation σ,b significantly underpredicts SSexp

c for all dry particle sizes and com-
positions studied here. The modeled critical supersaturations, SSσ,b

c , are well outside25
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the range of experimental uncertainty in all cases. Model representation σw generally
also underpredicts experimental critical supersaturations, but to a lesser degree.

The partitioning representation (σ,p) overall predicts SSexp
c well. Specifically, for the

mixed particles comprising SDS, σ,p is superior to the bulk property representations
(σ,b and σw ) over the ranges of particle sizes and compositions studied. In case of5

the particles comprising one of the fatty acid salts (FAS), the σ,p representation tends
to somewhat overpredict experimental critical supersaturations. Detailed analysis (not
shown here) indicate that this generally occurs for the smaller particles comprising the
larger mass-fractions of the stronger surfactants. For the largest particles comprising
FAS, all surfactant representations underpredict SSexp

c . The dependency of the critical10

supersaturations on Dp in the log-log plots (as in Fig. 2) is generally steeper for model
predictions than observed experimentally. There appears to be some size-dependent
effect on activation not accounted for with the equilibrium Köhler model.

5.2.2 Effect of surfactant mass fraction

Figure 4 shows measured (SSexp
c ) and modeled (SSc) critical supersaturations for par-15

ticles of selected dry sizes comprising sodium dodecanoate (C12) in increasing mass
fractions (wC12). Upper curves and data points are results for Dp = 40 nm, represen-
tative of the “smaller” particle sizes, and lower curves and data points are results for
Dp = 100 nm, representative of the “larger” particles studied. The bulk representation
(σ,b) increasingly underpredicts experimental critical supersaturations with increasing20

surfactant mass-fraction in the dry particles. The partitioning representation (σ,p) gen-
erally describes experimental activation well, but overpredicts SSexp

c for the smaller
particles (Dp = 40 nm) with the largest wC12 (95%). This overprediction is likely due
to uncertainties in the surface tension parameterization applied (see Sect. 5.5 below).
The simple σw representation also describes experimental values well for the smaller25

wC12, but underpredicts SSexp
c when particles contain significant C12 mass fractions

(e.g. >50%).
In Fig. 5, the same results for the relative differences (SSexp

c −SSc)/SSexp
c shown in
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Fig. 3 are displayed as a function of dry particle surfactant mass fraction (wSFT), for the
selected dry particle sizes of Dp = 40 and 100 nm. The conclusions for all the surfac-
tants studied are identical to those seen in Fig. 4 for C12. When particles comprise less
than about 50% by mass of surfactant, representations σ,p and σw predict very similar
critical supersaturations and both describe experimental values well. For these parti-5

cles, the simple σw representation, which ignores surfactant properties altogether, thus
appears to be a good first-order approximation for representing cloud droplet activation
behavior of the surfactants.

5.3 Individual Kelvin and Raoult contributions

5.3.1 Single particle predictions10

The model predicted critical supersaturations, given by the calculated Köhler curve
maxima, are governed by the combination of two opposing effects, the suppression of
water partial pressure over an aqueous solution by dissolved compounds (the Raoult
effect) and the enhanced vapor pressure over a curved surface (the Kelvin effect).
Fig. 6 shows Köhler model predictions of droplet growth and activation, calculated with15

the different surfactant representations, for particles comprising surfactant C12 with
wC12 = 81% and Dp = 40 nm. The individual Kelvin (K ) and Raoult (R) terms are seen
in the left-hand panel (a) and the resulting Köhler curves in the right-hand panel (b).
The measured critical supersaturation value (SSexp

c ) for these particles is depicted in
panel (b) as a red line, with the 95%-confidence interval.20

As seen from Eq. (1), the Kelvin term depends explicitly on droplet surface tension
(σ). The pink Kelvin curve in Fig. 6a is calculated assuming the constant surface ten-
sion of pure water (σw ) for the growing droplet at all diameters (d ). This curve thus
describes the change in vapor pressure enhancement arising purely from the droplet
surface curvature changing with size. The green curve shows the predicted Kelvin25

effect with a concentration-dependent droplet surface tension (σ), corresponding to a
macroscopic solution of the same overall composition as the droplet (σ,b). The effect
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of reduced σ at a given droplet diameter is to shift the Kelvin term vertically down to
lower equilibrium supersaturations (SS). As the droplet grows, it becomes increas-
ingly dilute and σ increases along with the droplet curvature radius. This flattens the
size-dependency of the Kelvin term. The kink in the green Kelvin curve (for droplet
diameters just below 300 nm) stems from the functional form of the surface tension5

parameterization and represents the point where the droplet surface tension becomes
constant as the bulk phase surfactant concentration increases above the ternary solu-
tion cmc.

When surfactant partitioning to the droplet surface is accounted for (σ,p), the droplet
solution properties at a given size (and thus overall composition) change significantly,10

compared to those of a macroscopic solution. This is clearly seen for the blue Kelvin
curve in Fig. 6a, which is shifted to considerably higher equilibrium supersaturations
(SS), compared to the green σ,b-Kelvin curve. The reason is evident from the corre-
sponding Raoult terms: the green Raoult curve is predicted without consideration of
surfactant partitioning in the droplet (and is thus the same for both σ,b and σw repre-15

sentations). The blue Raoult curve takes surfactant partitioning to the droplet surface
into account (σ,p). For the smaller droplet sizes (e.g. d < 300 nm), surfactant concen-
trations in the droplet bulk are significantly depleted due to surface partitioning and the
reduced Raoult effect significantly increases the droplet water activity (aw ). The effect
of surfactant surface partitioning is thus seen as a horizontal shift of the Raoult term to-20

wards smaller droplet diameters, as larger aws are reached at earlier stages of droplet
growth. Surfactant depletion from the droplet bulk also results in a greatly diminished
surface tension reduction, as seen from the upward shift of the σ,p-Kelvin curve com-
pared to the σ,b-Kelvin curve. Clearly, depletion of surfactant from the droplet bulk
diminishes both the surface tension and water activity reduction attained at a given25

droplet diameter.
Figure 6b shows the Köhler curves resulting from combining the respective Kelvin

and Raoult terms displayed in panel (a). For the same droplet sizes (d ), the (green)
Köhler curve predicted with the σ,b representation is shifted down to significantly lower
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equilibrium supersaturations, compared to the (pink) σw -Köhler curve, due to reduced
droplet surface tension. However, when surfactant partitioning to the droplet surface
is included, the combined effects on the respective Kelvin and Raoult terms result in
a (blue) σ,p-Köhler curve that is shifted to even higher SS than predicted for σw by
completely disregarding any surfactant properties. The droplet surface tension is re-5

duced within the partitioning model, as seen by the Kelvin terms in panel (a), where
K σ,p <K σw , but with the surfactant bulk-concentrations depleted due to surface parti-
tioning, the effect is insufficient to counteract the simultaneous increase in water activ-
ity.

5.3.2 Predicted activation parameters10

The respective Köhler curve maxima in Fig. 6b yield the critical supersaturations (SSc)
predicted with each surfactant representation. These maxima increase in the order
SSσ,b

c � SSσw
c <SSσ,p

c . This trend is seen for all dry particle sizes and compositions
studied (see also Figs. 2 and 7b). In our previous study, surfactant representations
σ,p and σw gave nearly identical predictions of critical supersaturations for single-15

component fatty acid salt particles (Prisle et al., 2008). This was a coincidence of the
mutual differences in predicted Kelvin and Raoult terms cancelling at the respective
points of droplet activation, for the specific particle compositions studied. The studies
of Sorjamaa et al. (2004); Sorjamaa and Laaksonen (2006) did not observe this coin-
cidence in their predictions, for either single-component SDS particles or for a range20

of surface tension parameters corresponding to three classes of atmospheric surfac-
tants, respectively. This is consistent with the findings of Ruehl et al. (2009) in a study
of high-relative humidity hygroscopic growth of particles with SDS. Here, we see that
representations σ,p and σw indeed also produce different results for mixed SFT-NaCl
particles with more than about 50% by mass of surfactant (Figs. 4 and 5).25

The predicted critical supersaturations in Fig. 6b occur for different correspond-
ing critical droplet diameters (dc). Care must therefore be taken when comparing
droplet parameters at activation predicted with the different surfactant representa-
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tions. In Fig. 7, we compare model representations σ,p and σw for 81% C12 par-
ticles by the relative equilibrium saturation ratios (S) and individual Kelvin (K ) and
Raoult (R) terms. The left-hand panel (a) shows Sσ,p(d )/Sσw (d ), K σ,p(d )/K σw (d ),
and Rσ,p(d )/Rσw (d ), as functions of droplet diameter (d ) for 40 nm dry particles.
In the right-hand panel (b), quantities predicted at the respective dcs are compared5

by Sσ,p
c (dσ,p

c )/Sσw
c (dσw

c ), K σ,p
c (dσ,p

c )/K σw
c (dσw

c ), and Rσ,p
c (dσ,p

c )/Rσw
c (dσw

c ), displayed as
functions of dry particle size (Dp). Since the predicted critical droplet diameters differ

in the two representations, the ratio dσ,p
c /dσw

c is also shown as a function of Dp (to be
read off the right-hand y-axis) in panel (b).

Figure 7a emphasizes the results of Fig. 6 and for σ,p and σw . At a given10

droplet size (d ), the magnitude of the relative increase in the Raoult term (water
activity, aw ) from surfactant bulk-depletion due to surface partitioning is greater than
that of the relative decrease in the Kelvin term from surface tension (σ) reduction,
|1−Rσ,p(d )/Rσw (d )|> |1−K σ,p(d )/K σw (d )|. As a consequence, the equilibrium satu-
ration ratio predicted for the droplet is always greater with the σ,p representation than15

with σw , such that Sσ,p(d )/Sσw (d )>1.
Figure 7b compares droplet parameters for representations σ,p and σw predicted at

the respective points of activation (dσ,p
c and dσw

c ). Critical saturation ratios are always
larger for σ,p than for σw , as Sσ,p

c (dσ,p
c )/Sσw

c (dσw
c ) > 1. This is a result of the Kelvin

and Raoult terms predicted at activation both being larger in the partitioning represen-20

tation, as seen from K σ,p
c (dσ,p

c )/K σw
c (dσw

c ) > 1 and Rσ,p
c (dσ,p

c )/Rσw
c (dσw

c ) > 1. At first,
it may seem surprising that the Kelvin terms are greater in kσ,p than in σw , where
surface tension is not reduced. Again, it must be stressed that the activating droplets
being compared are of different sizes. Specifically, dσ,p

c /dσw
c < 1 over the full range

of dry particle sizes (Dp). Therefore, K σ,p
c (dσ,p

c ) >K σw
c (dσw

c ) does not imply that sur-25

face tension is not reduced in the activating droplets in σ,p. Rather, droplets with the
smaller critical diameters (dσ,p

c <dσw
c ) have more curved surfaces and are subject to

a greater curvature enhancement of vapor pressure, despite the reduced surface ten-
sion. The critical droplet diameters predicted with σ,p and σw for 40 nm dry particles
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are marked in panel (a) of Fig. 7. Surface tension is clearly reduced in σ,p at dσ,p
c ,

where K σ,p(dσ,p
c )/K σw (dσ,p

c )<1.
Even if droplets are predicted to activate for smaller critical sizes, the Raoult terms

at activation are still larger in the σ,p representation than in σw , as noted. The smaller
activating droplets (dσ,p

c <dσw
c ) formed on particles of a given dry size (Dp) and com-5

position have larger total surfactant concentrations (cT (dσ,p
c )>cT (dσw

c )). However, the
smaller droplets also have larger surface-area-to-bulk-volume ratios (A/V ) and the sur-
factant bulk concentrations are thus relatively more depleted due to surface partitioning
(cB/cT (dσ,p

c )<cB/cT (dσw
c )). Figure 7b shows that, despite the larger total surfactant

concentrations, surface partitioning in the smaller activating droplets even results in10

smaller bulk concentrations in absolute terms (cB(dσ,p
c ) < cB(dσw

c )) – and thus in the
larger droplet water activities for activating droplets predicted with σ,p compared to
σw .

For mixed SFT-NaCl particles of a given dry size and composition, the predicted
shapes of the Köhler curves and their maximum values and positions are seen to be15

governed by complex relations between the individual Kelvin and Raoult terms. Al-
though droplet surface tension is reduced in σ,p, the effect is overwhelmed by surfac-
tant depletion from the droplet bulk due to surface partitioning. This is the case both
at a given droplet size (d ) and overall composition, and when comparing activation
parameters predicted at the respective points of droplet activation (dc). Particularly,20

the comprehensive account of surfactant properties actually predicts higher critical su-
persaturations than the simple approach that ignores surfactant properties altogether
(Sσ,p

c > Sσw
c ). This is opposed to the decrease in critical supersaturations that could

be immediately expected from the explicit dependency of the Kelvin term on reduced
droplet surface tension (Shulman et al., 1996).25
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5.4 Activation properties of mixed surfactant-salt particles

Comparing experimental results and model predictions using different surfactant rep-
resentations illustrate some of the dynamics behind the combined effect of surfactant
properties on cloud droplet activation for the mixed particles. The partitioning represen-
tation is the most comprehensive of the three surfactant representations applied in our5

thermodynamic model. Predicted surface tensions of the droplets formed are indeed
reduced, as anticipated from the presence of water-soluble surfactants in the parti-
cles studied. However, due to surfactant partitioning, the surface tension reductions
attained are much smaller than for macroscopic solutions of the same overall compo-
sition as the droplets. As a result, the predicted diminished curvature enhancement of10

vapor pressure due to decreased surface tension is dominated by the simultaneously
diminished Raoult suppression of water activity.

This explains how the bulk representation of surfactant properties greatly underpre-
dicts experimental critical supersaturations (see Figs. 2, 3, 4, 5, and 6b). The bulk
model overestimates the reductions in both Kelvin and Raoult terms from the sur-15

factant by disregarding depletion of the surfactant bulk-concentration due to surface
partitioning. The above also explains how the simple representation that completely
ignores surfactant properties can also lead to significant underpredictions of experi-
mental critical supersaturations. This might have seemed surprising at first, since the
actual droplet surface tension is not expected to increase significantly above the pure20

water value, even with the presence of the inorganic salt, which can slightly increase
aqueous solution surface tension (Low, 1969). By using the constant surface tension
of pure water for activating droplets, the simple model misses the reduction in Kelvin
effect from reduced droplet surface tension, but this is overshadowed by simultane-
ously overestimating the Raoult effect from disregarding surfactant partitioning. When25

SSexp
c >SSσw

c , it is thus a clear experimental indication of the effect of surfactant par-
titioning in activating cloud droplets, where surface activity causes the Raoult effect
suppression to be greater than the Kelvin effect suppression.
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Other studies have considered surfactant properties by using reduced surface ten-
sions for activating droplets corresponding to macroscopic (bulk) aqueous solutions
with the same overall composition (Shulman et al., 1996; Facchini et al., 1999; Dinar
et al., 2006; Svenningsson et al., 2006). Calculations have also been simplified by as-
suming droplets sufficiently dilute that the constant surface tension of pure water could5

be applied (Bilde and Svenningsson, 2004; Hartz et al., 2005). Li et al. (1998) and
Rood and Williams (2001) partially accounted for surface partitioning in cloud droplet
formation of mixed SDS-NaCl particles by including the effect on droplet surface ten-
sion. Rood and Williams (2001) present experimental data for the CCN activity of mixed
SDS-NaCl particles with similar compositions as was studied in this work. Their mea-10

sured critical supersaturations follow the same trends with particle size and surfactant
mass fraction as the results presented here for particles comprising SDS. The values
of Rood and Williams (2001) are consistently lower than ours, but as no experimen-
tal uncertainties are given in their study, we cannot say if the difference is significant.
The results of the present study show that surfactant properties are overall well repre-15

sented in Köhler predictions of cloud droplet activation with a full account for the effects
of surfactant partitioning on both Kelvin and Raoult terms.

Generally, the combined effects of reduced surface tension and surfactant surface
partitioning on droplet ativation will depend on dry particle size (Dp), surfactant mass
fraction (wSFT), and surfactant strength (as for example expressed by Szyskowski20

parameters a and b). However, the overall effect of surfactant properties in gen-
eral, and of surface partitioning in particular, results from intricate mutual depen-
dencies of the Kelvin and Raoult effects on these fundamental particle and com-
ponent properties. The largest effect of surface activity would be expected for the
smallest particles containing the largest mass fractions of the strongest surfactants.25

Droplets formed on smaller dry particles activate at critical diameters corresponding
to smaller diameter growth factors (dc/Dp), for which droplets are more concentrated

(cT ∝ (dc/Dp)−3). These droplets however also have larger surface area-to-bulk vol-

ume ratios (A/V ∝ d−1
c ) and the surfatant will be relatively more depleted from the

24693

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24669–24715, 2009

Mixed surfactant-salt
CCN

N. L. Prisle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

bulk phase. It has in the present work not been possible to establish explicit gauges
in parameters Dp, wSFT, and a and b, for example, for conditions where the effects
of surfactant properties become significant for predictions of cloud droplet activation.
Some reasons are the experimental uncertainties on measured critical supersatura-
tions, and model sensitivities to uncertainties in experimental parameters and in the5

surface tension parameterizations applied. For the fatty acid salts, the ternary solu-
tion surface tension parameterizations are not constrained by measurements for bulk
phase mass-fractions (wFAS) relative to NaCl below 20%. In small droplets, the sur-
factant bulk phase depletion due to surface partitioning can however yield very low
wFASs. The FAS surface tension parameterizations may therefore not reproduce the10

correct surface tension behavior for such droplets. The limited span of surface tension
parameters investigated here may also make it difficult to resolve any variation with
surfactant strength. Establishment of gauges for the representation of surfactant prop-
erties in cloud droplet activation would nevertheless be of great use for atmospheric
model calculations and is something we shall continue to explore.15

As a simple preliminary gauge, disregarding surfactant partitioning and assuming the
constant surface tension of pure water seems to be a good first-order approximation
for representing surfactant properties in activation of mixed particles comprising less
than 50% by mass of surfactant. The predicted effects of surfactant properties on
the individual Kelvin and Raoult terms cancel in the comprehensive partitioning model20

and give the same overall results as the simple representation. The agreement of
experimental results for particles with similar mass fractions of the different surfactants
furthermore suggests that for dry particle surfactant mass fractions (wSFT) less than
50%, the large Raoult effect of the inorganic salt dominates any differences in activation
behavior arising from differences in organic molecular properties (see Fig. 1).25

The cloud droplet activation properties for the mixed particles naturally depend on
the properties of both surfactant and NaCl. The inorganic salt affects surfactant prop-
erties of the organic by increasing surfactant strength in macroscopic ternary aqueous
solutions. In addition, NaCl by mass-fraction contributes a large Raoult effect relative
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to the surfactant in macroscopic solutions. Both effects influence the relative impor-
tance of the Kelvin and Raoult effects for the activating droplets. In particular, the
predicted effects of surfactant properties on the individual Kelvin and Raoult terms do
not cancel for mixed particles with more than 50% by mass of the surfactants stud-
ied, as was observed for single-component particles of the same surfactants. In fact,5

even if NaCl increases surfactant strength in the macroscopic solutions, the effect of
enhanced surface partitioning is even greater on increasing the water activity in the
activating droplets.

5.5 Model sensitivities

The partitioning representation is expected to provide the most comprehensive de-10

scription of surfactant properties. Nevertheless, calculations somewhat overpredict
experimental critical supersaturations (SSσ,p

c >SSexp
c ) for particles comprising the fatty

acid salts (FAS) in the highest mass-fractions studied (∼ 95%). The most significant
model sensitivities concerns experimental uncertainties in the dry particle surfactant
mass-fractions (wSFT) and mass densities (ρSFT), uncertainties in the surface tension15

parameterizations applied (as explained above in Sect. 5.4), and the model assumption
of droplet solution ideality.

Uncertainties in experimental dry particle surfactant mass-fraction or in the surface
tension parameterizations applied would be expected to become increasingly impor-
tant for the larger surfactant mass-fractions in the particles, where surfactant properties20

play a relatively larger role, compared to the inorganic salt. In the model calculations,
we assume the dry particle surfactant and NaCl mass-fractions to be equal to their rel-
ative solute mass-fractions in the atomizer solutions. This assumption has previously
been argued as reasonable for other mixed organic-inorganic particle compositions
(Bilde and Svenningsson, 2004; Henning et al., 2005). In addition, the studied fatty25

acid salts (FAS) showed no evaporation from pure-component particles in equivalent
experiments (Prisle et al., 2008). During the particle generation process, precipitation
of surfactant, due to decreased solubility in the high-ionic strength NaCl aqueous solu-

24695

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24669–24715, 2009

Mixed surfactant-salt
CCN

N. L. Prisle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

tion, or evaporation of the surfactant from the wet or dry aerosol, would act to decrease
the actual surfactant mass-fractions in the dry particles. On the other hand, partition-
ing in the generated droplets during atomization could increase the relative amount
of surfactant in the droplets, compared to the atomizer solution. Assuming too high
wSFT could explain the overpredictions of SSexp

c . However, model calculations using5

the partitioning representation do not overpredict SSexp
c for mixed particles comprising

SDS, which is the better-characterized of the surfactants studied. This points to the
modest overpredictions by the partitioning model for FAS being due to uncertainties
in the surface tension parameterizations becoming evident for the highly bulk-depleted
droplets formed on small particles with the largest wFAS.10

The assumption of unit mass-density for the organic surfactants is discussed by
Prisle et al. (2008). The value of pure surfactant bulk-density, together with the as-
sumption of volume additivity of individual components in the mixed particles, ulti-
mately affects the relative molar amounts of surfactant and NaCl solute predicted in
the activating droplets. Likely, the actual organic densities are not very different from15

1 g cm−3. Nevertheless, detailed sensitivity analysis indicate that uncertainty in or-
ganic and mixed particle mass-density is a principal cause of uncertainties in model
predicted critical supersaturations. Pure surfactant bulk-densities and mixed particle
densities are both issues we will address in future studies.

Ideality has been assumed for all components of the droplet solutions at all stages20

of droplet growth, due to lack of activity data for the droplet solutions in question. The
droplet bulk is sufficiently dilute at the point of activation for this to be a reasonable
approximation (Prisle et al., 2008). Non-ideality would be expected to increase droplet
water activity above the corresponding water mole fraction (aw >xw ). Assuming ideality
for water would this way decrease predicted critical supersaturations compared to the25

experimental values. This is opposite of what is observed here for FAS with σ,p. On the
other hand, the effect is by no means capable of resolving the large underpredictions
of SSexp

c by σ,b.
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5.5.1 Micelle Formation in Droplets

As described in Sect. 4.2 above, surfactants can form micelles when bulk-
concentrations exceed the critical micelle concentration (cmc). In all calculations,
droplet bulk phase concentrations of both surfactant and NaCl are assumed to be con-
tinuous functions over the entire range of growing droplet sizes. If the surfactant bulk5

phase concentration was limited to the ternary solution cmc, a sufficiently small cmc
value could inhibit droplet activation and increase predicted critical supersaturations by
a mechanism analogous to water solubility limiting the droplet bulk phase concentration
of a slightly soluble particle component (Bilde and Svenningsson, 2004).

Tabazadeh (2005) suggested that formation of micelle-like structures in droplet so-10

lutions of humic-like substances (HULIS) would limit the maximum droplet surface ten-
sion reduction attainable to about 10 mN m−1. These considerations imply that micelle
formation is favored over surface partitioning of the surfactant in droplets where the total
surfactant concentration exceeds the cmc. The mechanism proposed by Tabazadeh
(2005) may however not be relevant for the present solutions of amphiphilic anionic15

surfactants mixed with an inorganic salt of common counter-cation. Surface tension
reductions much greater than 10 mN m−1 below the value for pure water was readily
observed during measurement on macroscopic ternary FAS-NaCl aqueous solutions
(Prisle et al., 2009).

Test calculations were made for selected particle sizes and compositions where20

droplet bulk-concentrations of surfactant were limited to the respective cmcs (cB
SFT ≤

cmc). With the partitioning representation, micelle formation has no effect on predicted
critical supersaturations (SSσ,p

c ), as cmc is not exceeded at droplet activation. Lim-
iting surfactant bulk-concentrations affects the shape of the Köhler curves predicted
with the bulk representation, but has no effect on the value of the critical supersat-25

urations (SSσ,b
c ). With the simple pure water representation, however, limiting cB

SFT

to cmc acts to increase SSσw
c to values above those predicted with σ,p for the same

particles. Therefore, σw with limited cB
SFT overpredicts experimental critical supersatu-
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rations (SSexp
c ) even more than does σ,p. Of course, in the simple σw representation,

droplet surface tension (σ) is not reduced. Reducing σ could potentially resolve the
difference between SSexp

c and SSσw
c predicted for cB

SFT ≤ cmc. Physically, the surfac-
tant molecules would then have to be adsorbed at the droplet surface, as described
within the σ,p representation. We therefore believe that the partitioning representation5

provides the most comprehensive account of surfactant properties and that micelle
formation is not an issue for the experiments in this study.

6 Conclusions

We have measured critical supersaturations for laboratory-generated particles com-
prising the organic surfactants sodium octanoate, sodium decanoate, sodium dode-10

canoate, and sodium dodecyl sulfate, mixed with sodium chloride. Results were mod-
eled from Köhler theory with three different representations of surfactant properties in
terms of droplet surface tension reduction and surfactant surface partitioning. The pre-
dicted overall effect of surfactant properties for cloud droplet activation of the mixed
particles results from complex mutual dependencies of the effects on the individual15

Kelvin and Raoult terms of the particle Köhler curves. The comprehensive thermody-
namic account of surfactant properties including the effects of surface partitioning in
activating droplets generally describes experimental observations well. Using reduced
droplet surface tension while ignoring the effects of surfactant surface partitioning in all
cases greatly underpredicts experimental critical supersaturations. In addition, ignor-20

ing surfactant partitioning and simply assuming the constant surface tension of pure
water can also lead to significant underpredictions of experimental values. However,
for mixed particles comprising less than about 50% by mass of surfactant, this simple
approach appears to be a good first-order approximation for representing surfactant
properties in activating droplets. This entails a significant simplification for model cal-25

culations of cloud droplet formation and properties.
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Appendix A

Simple partitioning example

The effect of surfactant partitioning on the magnitude of both water activity and surface
tension, resulting from a given overall solution composition, can be illustrated with the5

following simple example. We assume that spherical droplets of different diameters
(d [µm]) are created from the same binary surfactant aqueous solution with a fixed
total surfactant molarity (cT [mmol L−1]). The total amount of surfactant in the droplet
(nT [mol]) can be calculated from cT and the droplet volume (V [L]). We imagine the
surface as an infinitely thin spherical shell with area A [m2]. The number area con-10

centration of surfactant molecules in the surface phase is called the surfactant surface
excess (Γ [m−2]). If we simply assume a fixed surface excess for droplets of all sizes,
the amount of surfactant in the surface (nS [mol]) is calculated by scaling Γ to the spher-
ical droplet surface area, as nS =ΓA. Then the size-dependent surfactant bulk phase
concentration (cB [mmol L−1]) is cB(d ) = cT −6 ·109Γ/Nad , where Na is Avogadro’s15

number.
Representative values for surfactant surface excess and total molarity are taken

from our previous study on single-component fatty acid salt particles (Prisle et al.,
2008), specifically as the values at the point of activation for 100 nm sodium decanoate
(C10) particles, Γ = 1018 m−2 and cT = 40 mmol L−1. Droplet surface tension is cal-20

culated from the surfactant bulk phase concentration using the concentration depen-
dent parametrization σ = σ(cB) for binary sodium decanoate aqueous solutions given
in Prisle et al. (2008). We ignore non-ideal interactions in the droplet solutions, such
that droplet water activity (aw ) is given by the equivalent water mole fraction (xw ). Then
the ratio cB/cT provides a measure of how much surfactant surface partitioning at a25

given droplet size (d ) diminishes the solute suppression and surface tension reduction
that can be achieved for the same total surfactant concentration.

Results of these simple calculations are presented in Table A1 and in Fig. A1. Sur-
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factant surface partitioning in this case becomes important for sub-micron droplets
(d < 1 µm). When the surfactant bulk-concentration decreases due to surface parti-
tioning, both water activity and surface tension in the droplet are increased accord-
ingly. Similar considerations have been presented by Bianco and Marmur (1992) and
Laaksonen (1993).5
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Table 1. Exact surfactant mass-fractions (wSFT [%]) in the studied particles.

SFT ∼20% ∼50% ∼80% ∼95%

C8 20 51 79 95
C10 20 50 73 94
C12 23 53 81 95
SDS 20 51 81 –
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Table 2. Physical properties of the studied compounds used in model calculations: molar
mass M [g mol−1], dissociation factor δ, and bulk mass density ρ [g cm−3]. In all cases we
have assumed δ =2, and for the fatty acid salts we assumed ρFAS =1 g cm−3.

molecular formula M [g mol−1] δ ρ [g cm−3]

CH3(CH2)6COONa 166.2 2 1
CH3(CH2)8COONa 194.2 2 1
CH3(CH2)10COONa 222.3 2 1
CH3(CH2)10SO4Na 288.4 2 1.176

NaCl 58.44 2 2.165
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Table 3. Szyskowski (Eq. 3) fitting parameters for FAS-NaCl aqueous surface tension parame-
terizations. Units of the a and b parameters are mN m−1 and mol kg−1, respectively.

a1 a2 a3 b1 b2 b3

C8 36.82 17.63 0 0.0119 0.0744 0
C10 40.10 8.06 −26.32 0.006 0.041 −0.034
C12 48.98 −0.88 0 0.004 0.004 0
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Table A1. Simple partitioning calculations. Surfactant bulk molarities (cB), ratio of surfactant
bulk and total (cT ) molarities, and droplet surface tension, σ = σ(cB), for droplets of different
sizes (d ) created from the same cT = 40 mmol L−1 sodium decanoate (C10) solution. The
surfactant surface excess is fixed to Γ=1018 m−2 for all droplet sizes.

d A/V cB cB/cT σ
[µm] [µm−1] [mmol L−1] [mN m−1]

0.3 20 6.8 0.170 68
0.5 12 20.1 0.502 61
1 6 30.0 0.751 57
10 0.6 39.0 0.975 54
50 0.12 39.8 0.995 54
∞ 0 40.0 1.000 54
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Fig. 1. Experimental critical supersaturations (SSexp
c [%]) as a function of dry particle diame-

ter (Dp [nm]) for all particle compositions. Individual panels show results for approximate dry
particle surfactant mass fractions (wSFT) of (a) 20%, (b) 50%, (c) 80% and (d) 95%.
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Fig. 2. Critical supersaturations (SSc [%]) for particles with 81% sodium dodecanoate (C12),
measured in experiments and modeled with the three different surfactant representations (σ,p,
σ,b, and σw ).

24709

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24669/2009/acpd-9-24669-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24669–24715, 2009

Mixed surfactant-salt
CCN

N. L. Prisle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

20 50 100 150

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dry particle diameter, D
p
 [nm]

(S
S

cex
p  −

 S
S

c) 
/ S

S
cex

p  [%
/%

]

(a) Mixed C8 + NaCl particles

 

 

σ, p
σ, b
σ

w

20 50 100 150

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dry particle diameter, D
p
 [nm]

(S
S

cex
p  −

 S
S

c) 
/ S

S
cex

p  [%
/%

]

(b) Mixed C10 + NaCl particles

 

 

σ, p
σ, b
σ

w

20 50 100 150

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dry particle diameter, D
p
 [nm]

(S
S

cex
p  −

 S
S

c) 
/ S

S
cex

p  [%
/%

]

(c) Mixed C12 + NaCl particles

 

 

σ, p
σ, b
σ

w

20 50 100 150

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dry particle diameter, D
p
 [nm]

(S
S

cex
p  −

 S
S

c) 
/ S

S
cex

p  [%
/%

]

(d) Mixed SDS + NaCl particles

 

 

σ, p
σ, b
σ

w

Fig. 3. Comparison of experimental (SSexp
c [%]) and modeled (SSc [%]) critical supersatura-

tions with each of the three surfactant representations (σ,p, σ,b, and σw ), for all dry particle
diameters (Dp) and compositions studied. Individual panels show results for particles compris-
ing each of the surfactants, (a) sodium octanoate (C8), (b) sodium decanoate (C10), (c) sodium
dodecanoate (C12), and (d) sodium dodecyl sulfate (SDS).
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Fig. 4. Critical supersaturations (SSc [%]) for particles with increasing mass fractions of sodium
dodecanoate (wC12), measured in experiments and modeled with the three different surfactant
representations (σ,p, σ,b, and σw ). Results are shown for selected dry particle sizes, Dp =
40 nm (upper curves and data points) and Dp =100 nm (lower curves and data points).
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Fig. 5. Relative differences between experimental (SSexp
c [%]) and modeled (SSc [%]) critical

supersaturations as a function of dry particle surfactant mass fraction (wSFT). Results are
shown for particles of all compositions studied, with selected dry sizes Dp =40 and 100 nm.
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Fig. 6. Köhler model predictions with the different surfactant representations, for dry particles
comprising 81% of C12 of diameter Dp = 40 nm: (a) individual Kelvin and Raoult contributions
and (b) resulting Köhler curves. The experimental critical supersaturation SSexp

c is depicted in
panel (b) as a red line with corresponding 95%-confidence interval.
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Fig. 7. Comparison of individual Kelvin (K ) and Raoult (R) terms and resulting equilibrium
saturation ratios (S) predicted with surfactant representations σ,p and σw for particles with
81% C12. Predictions are shown for growing droplets formed on 40 nm dry particles in panel
(a) and at the respective points of droplet activation for particles of different dry sizes in panel
(b). The scale for the ratio of predicted critical droplet diameters in panel (b) is given on the
right-hand y-axis.
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Fig. A1. Ratio of the surfactant bulk (cB) and total (cT ) molarities as a function of droplet size
(d ). Droplets of all sizes have fixed total surfactant molarity cT = 40 mmol L−1 and surfactant
surface excess Γ=1018 m−2.
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